Este blog está creado para compartir, opinar, discutir sobre temas de lógica, lógicas no-clásicas, filosofía de la lógica, filosofía de las matemáticas.
Bienvenidos !!!
Este blog no tiene ninguna otra finalidad que compartir y ayudar a reflexionar sobre lógica y filosofía de la lógica, filosofía de las matemáticas, de la ciencia etc.
El blog es absolutamente gratuito.Es importante difundir nuestras reflexiones, discusiones, investigaciones y logros en el campo de las disciplinas que nos apasionan .
Gracias por seguir el blog !!!
Claudio Conforti
lunes, 25 de junio de 2012
Bohrification of operator algebras and quantum logic Chris Heunen · Nicolaas P. Landsman · Bas Spitters
Abstract
Following Birkhoff and von Neumann, quantum logic has traditionally
been based on the lattice of closed linear subspaces of some Hilbert space, or, more
generally, on the lattice of projections in a von Neumann algebra A. Unfortunately,
the logical interpretation of these lattices is impaired by their nondistributivity and
by various other problems. We show that a possible resolution of these difficulties,
suggested by the ideas of Bohr, emerges if instead of single projections one considers
elementary propositions to be families of projections indexed by a partially ordered set
C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal
generality and ease of use within topos theory, we assume that A is a so-called Rickart
C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras
of A. Such families of projections form a Heyting algebra in a natural way, so that the
associated propositional logic is intuitionistic: distributivity is recovered at the expense
of the law of the excluded middle. Subsequently, generalizing an earlier computation
for n × n matrices, we prove that the Heyting algebra thus associated to A arises as
a basis for the internal Gelfand spectrum (in the sense of Banaschewski–Mulvey) of
the “Bohrification” A of A, which is a commutative Rickart C*-algebra in the topos
of functors from C(A) to the category of sets. We explain the relationship of this
construction to partial Boolean algebras and Bruns–Lakser completions. Finally, we
establish a connection between probability measures on the lattice of projections on a
Hilbert space H and probability valuations on the internal Gelfand spectrum of A for
A = B(H).
Suscribirse a:
Enviar comentarios (Atom)
Como su título pretende sugerir, en este documento es un intento de conciliar los puntos de vista sobre la
ResponderEliminarestructura lógica de la mecánica cuántica de Bohr, por un lado, y von John
Neumann por el otro. Esto no es una tarea fácil.
El Artículo completo como siempre se puede solicitar a conforti.claudio@gmail.com